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Abstract

Objectives: We assessed the current genetic evidence for the involvement of

various cell types and tissue types in the etiology of neurodegenerative diseases,

especially in relation to the neuroinflammatory hypothesis of neurodegenerative

diseases. Methods: We obtained large-scale genome-wide association study

(GWAS) summary statistics from Parkinson’s disease (PD), Alzheimer’s disease

(AD), and amyotrophic lateral sclerosis (ALS). We used multiple sclerosis

(MS), an autoimmune disease of the central nervous system, as a positive con-

trol. We applied stratified LD score regression to determine if functional marks

for cell type and tissue activity, and gene-set lists were enriched for genetic heri-

tability. We compared our results to those from two gene-set enrichment meth-

ods (Ingenuity Pathway Analysis and enrichr). Results: There were no

significant heritability enrichments for annotations marking genes active within

brain regions, but there were significant heritability enrichments for annotations

marking genes active within cell types that form part of both the innate and

adaptive immune systems. We found this for MS (as expected) and also for AD

and PD. The strongest signals were from the adaptive immune system (e.g., T

cells) for PD, and from both the adaptive (e.g., T cells) and innate (e.g., CD14:

a marker for monocytes, and CD15: a marker for neutrophils) immune systems

for AD. Annotations from the liver were also significant for AD. Pathway analy-

sis provided complementary results. Interpretation: For AD and PD, we found

significant enrichment of heritability in annotations marking gene activity in

immune cells.

Introduction

Neurodegenerative diseases – including Alzheimer’s (AD),

amyotrophic lateral sclerosis (ALS), and Parkinson’s

disease (PD) – are personally devastating and an increas-

ing burden on health care systems worldwide. Recently

there has been much progress in identifying genetic vari-

ants associated with neurodegenerative diseases. In the

924 ª 2016 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/4.0/


latest AD meta-analysis, 19 loci in addition to the well-

established APOE locus were pinpointed.1 The latest ALS

meta-analysis identified three ALS-associated loci2 and the

latest PD meta-analysis brought the total number of

established PD loci to 26.3 Despite progress in identifying

genetic hits in these neurodegenerative diseases, the

underlying processes or cell types mediating the pathology

remain uncertain.

As genome-wide association studies (GWASs) have

grown in size and power, so has the quality and scope of

functional information that can be used to annotate the

genome with relevant genomic and epigenomic marks

linked to the regulation of gene expression. Previous stud-

ies have demonstrated enrichment of disease-associated

variants (for numerous diseases) with functional genomic

annotations, including DNase I hypersensitive sites, tran-

scription factor binding sites, histone modifications, and

expression quantitative trait loci (eQTLs).4–7 These anno-

tations vary depending on cell/tissue type. Given the

many ways in which complex diseases arise, and for

human brain diseases, the well-recognized cellular hetero-

geneity of the brain, pinpointing cell types of interest, is

important to further understand pathogenicity. Efforts to

obtain brain samples (the most obviously relevant tissue

for neurodegenerative diseases) for eQTL analyses are

ongoing.8–13 There has been a recent proliferation in the

availability of cell-type and tissue-specific annotations,

including brain tissue, for example, through the Roadmap

Epigenomics Project14 and the PsychEncode Project.11

Nevertheless, obtaining large numbers of post mortem

human brains remains challenging, and current eQTL

analyses are likely to be underpowered. Characterization

of eQTLs and DNA regulatory elements in blood is a

complementary approach.

The neuroinflammatory hypothesis of neurodegenera-

tive diseases posits that dysregulation of the immune sys-

tem is an important factor in the etiology of these

diseases.15,16 There is little doubt that multiple sclerosis

(MS) is an immune-mediated disease.17–19 We therefore

use this disease as a positive control with regard to

expected enrichment in heritability for annotations from

immune cells. There is extensive functional and clinical

evidence that immune dysfunction plays a key role in the

pathogenesis of the relapse-remitting phase of MS.20,21

For AD, Yokoyama et al.22 showed that eight variants

were associated with both AD and immune-mediated dis-

eases, and there is further evidence from pathway analy-

sis1,23,24 and from animal models.25 For PD, the role of

the immune system has been suggested through pathway

analyses,26,27 animal models,28 and variants in the Human

Leukocyte Antigen (HLA) region reaching statistical sig-

nificance in GWASs.3,29 For ALS, there is evidence of

immune abnormalities.30 Nevertheless, the extent to

which the immune system is involved in neurodegenera-

tive diseases, such as AD, ALS and PD, and the potential

roles played by the innate and adaptive immune compo-

nents remain unestablished.

Finucane et al.31 introduced stratified LD score regres-

sion as a method for partitioning the inferred heritability

from GWAS summary statistics. They determined whether

genetic heritability in 17 GWASs was enriched within var-

ious functional annotations which reflected parts of the

genome that were active in a number of tissues and cell

types. We applied this methodology to four diseases (MS,

AD, ALS, PD) to test for enrichment of heritability, both

using Finucane et al.’s31 cell-type group annotations and

using additional annotations from brain and immune

cells and from published sets of brain and immune-

related genes.32

Methods

We obtained GWAS summary statistics for three neu-

rodegenerative diseases: AD,1 ALS,2 and PD.3 We used

MS33 as a positive control, as it is a disease affecting the

brain with known immune etiology. All studies were con-

ducted in European populations, and are summarized in

Table 1. For AD, which is a two-stage study, we only

used data from the first stage (see Box 1 for details on

this study). We did not study Huntington’s disease

(which has other genetic modifiers in addition to the pri-

mary HTT locus) and frontotemporal dementia, because

the current GWAS sample sizes for these diseases are

modest, and thus the datasets were considered to be

insufficiently powered for our analyses.31

We estimated pairwise genetic correlations among the

four diseases using cross-trait LD score regression.34 We

then applied stratified LD score regression to determine if

various functional categories (cell-type groups, annota-

tions at the tissue/cell level for brain or immune cells,

and sets of brain and immune gene lists) were enriched

for heritability. LD score regression exploits the expected

relationships between true association signals and local

LD around them to correct out systematic biases and

Table 1. Description of the genome-wide association studies sum-

mary statistics.

Neurodegenerative

disease PMID Cases Controls Cohorts

Parkinson’s disease 25064009 13,708 95,282 15

Alzheimer’s disease 24162737 17,008 37,154 19

Amyotrophic lateral

sclerosis

24256812 7177 8393 8

Multiple sclerosis 21833088 9772 17,376 23
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arrive at unbiased estimates of genetic heritability within

a given set of SNPs (here stratified according to their

functional category).31 Following Finucane et al.,31 we

added annotations individually to the baseline model; we

used HapMap Project Phase 3 SNPs for the regression

and 1000 Genomes Project European population SNPs

for the reference panel; we only partitioned the heritabil-

ity of SNPs with minor allele frequency >5%; and we

excluded the Major Histocompatibility Complex (MHC)

region from analysis. The high LD and strong association

signals within the MHC region results in a dominating

effect on LD score regression, and for the purposes of our

analyses excluding this region result in a conservative

approach.

The grouped cell-type annotations provided by Finu-

cane et al.31 are the union of histone marks for 10 broad

categories including central nervous system (CNS), car-

diovascular, immune/hematopoietic, and liver. For these

analyses, we corrected for multiple testing of four GWASs

across 10 cell-type groups (4 9 10 = 40 hypotheses

tested), resulting in a Bonferroni significance threshold of

P = 1.2 9 10�3.

We then extended the analytical approach of Finucane

et al.31 in the following ways. First, we obtained additional

annotation information. We obtained histone marks and

DNase I hypersensitive sites data from the Roadmap

Epigenomics Consortium14; we obtained eQTLs derived

from brain regions from the UK Brain Expression Consor-

tium10 and the GTEx Consortium9; and we obtained pro-

moter capture HiC array express data in CD34 (a marker

of immature hematopoietic cells) cells from GM12878

(reference: E-MTAB-2323).35 We also considered two gene

sets. All these annotations are listed in Table S1. Second,

in order to reduce the multiple testing burden, we com-

bined information across the four different histone marks

and the DNase I hypersensitive marks in order to create

an aggregate set of regulatory marks for each cell type.

This aggregation annotation was obtained based on a sim-

ple union operation: for each tissue or cell type, a SNP

was labeled as “annotated” based on whether it possessed

any relevant histone mark or DNase I hypersensitive mark.

Both DNase I and histone marks are known to reflect

active regions of the genome, motivating their aggregation

in order to create a general mark of genomic activity.

DNase I sites are associated with an open chromatin struc-

ture, and different histone marks are markers of active

promoters (H3K4Me3 + H3K27Ac) or active enhancers

(H3K4Me1 + H3K27Ac) regions.

For brain tissue, we defined a union set of histone

marks plus DNase I hypersensitive sites from the Road-

map Epigenomics Consortium14 using the same aggrega-

tion procedure as above. This processing resulted in one

annotation per brain region (10 annotations).

We grouped eQTLs across all brain regions, but treated

the eQTLs from the UK Brain Expression Consortium10

and the GTEx Consortium9 separately (resulting in two

annotations). Both the GTEx and UKBEC analyses

included brain regions highly relevant to MS, AD, and

PD, namely white matter, hippocampus, temporal cortex,

and substantia nigra.

Among specific immune cells, we assessed the histone

marks described previously,31 and also the histone marks

and DNase I hypersensitive site data from the Roadmap

Epigenomics Consortium for immune and blood cells,14

and we took the union for each cell type as described

above (three histone marks and DNase I hypersensitive

site). This resulted in 20 annotations from Finucane

et al.31 and 14 annotations from Roadmap.

Additionally, we defined four immune cell-type

annotations based on promoter capture HiC array express

data in CD34 from GM12878 (reference: E-MTAB-

2323).35 The data for the prey and bait were analyzed sep-

arately for interactions between captured promoter and

captured promoter interactions and for captured

promoter and all other regions, which resulted in four

annotations.

The above cell/tissue-type-specific annotations resulted

in a multiple testing correction for four GWASs across 50

(12 brain + 38 immune) annotations (4 9 50 = 204

hypotheses tested). Thus, we set a Bonferroni significance

threshold of P = 2.5 9 10�4 for these analyses. Note that

there are correlations within the immune and brain anno-

tations, making our Bonferroni correction somewhat con-

servative.

Box 1.

International Genomics of Alzheimer’s Project (IGAP) is

a large two-stage study based on GWAS on individuals of

European ancestry. In stage 1, IGAP used genotyped and

imputed data on 7,055,881 single nucleotide polymor-

phisms (SNPs) to meta-analyze four previously pub-

lished GWAS datasets consisting of 17,008 AD cases and

37,154 controls (the European Alzheimer’s Disease

Initiative – EADI, the Alzheimer Disease Genetics

Consortium – ADGC, the Cohorts for Heart and Aging

Research in Genomic Epidemiology consortium –
CHARGE, the Genetic and Environmental Risk in AD

consortium – GERAD). In stage 2, 11,632 SNPs were

genotyped and tested for association in an independent

set of 8572 AD cases and 11,312 controls. Finally, a meta-

analysis was performed combining results from stages 1

and 2.
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We also applied heritability enrichment analysis to two

sets of genes: one with known brain and one with known

immune function. We used a brain gene list of 2635

genes described previously by Raychaudhuri et al.,36 and

an immune gene list of 973 genes described previously by

Pouget et al.32 Brain genes were defined as those fulfilling

any of the following criteria: preferential expression in the

brain compared to other tissues, “neural-activity” annota-

tion in panther, “learning” annotation in ingenuity, and

“synapse” annotation in gene ontology. Immune genes

were defined as those with an “immune response” anno-

tation in at least three of the following databases: Kyoto

Encyclopedia of Genes and Genomes, Gene Ontology,

Ingenuity, and Immunology Database and Analysis Portal.

SNPs were annotated to genes using a 50-kb window, and

a baseline list of all genes using this 50-kb window was

included in the model as described previously.32

Finally, we contrasted the above heritability enrichment

analyses with a complementary approach based on gene-

set enrichment analysis. We used Ingenuity Pathway

Analysis (IPA) (www.ingenuity.com) to identify pathway

enrichment among genes associated with different neuro-

logical traits for canonical pathways. Canonical pathways

are structured pathways. Data from the different pheno-

types were integrated and subjected to network analysis

via IPA to identify pathway enrichment. Enriched net-

works are ordered by �log P-value, based on a Fisher

exact test P-value.37 For each disease, we included SNPs

with a P < 5 9 10�4, and excluded SNPs in the MHC

region due to the long stretches of LD in this region. We

also performed a pathway analysis looking at KEGG path-

ways using enrichr38,39 in order to compare results.

Results

There is limited evidence of pairwise genetic correlation

among the four diseases using cross-trait LD score regres-

sion. The lack of an AD–PD pairwise correlation has

already been reported, as well as between AD–MS and

PD–MS.40 We also found no statistically significant evi-

dence for genetic correlation between ALS–AD (0.2,

P = 0.08), ALS–PD (�0.08, P = 0.01), and ALS–MS

(�0.04, P = 0.7).

For the grouped cell-type analysis from Finucane

et al.,31 the most significant enrichment was seen for the

immune/hematopoietic category for MS (10.1, P = 3.8 9

10�13), confirming the recognized role of the immune sys-

tem in this disease. This category was also significantly

enriched for heritability of AD (5.5, P = 2.4 9 10�7), in

addition to liver (10.5, P = 1.1 9 10�5), and these AD sig-

nals remained significant even after the removal of APOE

(chr19: 44,905,754–44,909,393) (5.5, P = 2.5 9 10�7 and

10.5, P = 1.1 9 10�5, respectively). For ALS and PD, there

were no significantly enriched functional categories

(Fig. 1).

At the tissue level, none of the enrichments were signif-

icant for the brain annotations. The most suggestive sig-

nal was for the inferior temporal region in AD (4.9,

P = 6.6 9 10�4).

For the cell-specific immune annotations assessed relat-

ing to both the innate and adaptive immune systems,

there was significant enrichment for MS heritability and

to a lesser extent for AD and PD. There was no enrich-

ment of heritability for ALS, the smallest dataset in our

study (Table S1, Fig. 2). Strong MS signals for heritability

enrichment were found in all immune cell categories,

including both adaptive and innate cell types. Significant

AD signals were found in all immune cell categories

except for the non-T cell/non-B cell component of the

adaptive immune system. For PD, only two annotations

passed the multiple testing threshold: primary T-helper

cells phorbol 12-myristate 13-acetate and ionomycin

(PMA-I) stimulated and primary T-regulatory cells from

peripheral blood (5.2 and 5.4, respectively, P = 0.0002 for

both), but several other immune annotations were sugges-

tive.

Consistent with previous applications of the LD score

regression method, we included the annotations separately

in the regression model. This means that enrichments in

innate immune cells could in principle be due to overlap

in annotation with adaptive immune cell types and vice

versa. To assess this issue, we determined the degree of

annotation overlap between all pairs of immune cell types

in our study (Table S2). We found the degree of overlap

between innate versus adaptive cells ranged from 0.06%

(for CD14: a marker for monocytes vs. CD20: a marker

of B lymphocytes) to 12% (for peripheral blood mononu-

clear primary cell vs. primary T cells from cord blood),

suggesting a large degree of independence between adap-

tive and innate cell marks. To further investigate this

issue, we carried out deeper analyses on a representative

adaptive cell type (primary T cells from cord blood) and

a representative innate cell type (CD15: a marker for neu-

trophils), both of which displayed strong heritability

enrichment signals in AD. The annotation overlap

between these two cell types was 6.7% (Table S2). When

we included both annotations simultaneously in the LD

score regression model, we found that both cell lines

remained significantly enriched for MS (22.0,

P = 7.4 9 10�20 and 17.2, 2.3 9 10�5, respectively). Sim-

ilarly, for AD, both cell lines remained significantly

enriched (8.7, P = 1.7 9 10�7 and 14.3, P = 7.3 9 10�6,

respectively). Neither of these cell lines had reached sig-

nificance for PD or ALS in the models where they were

inputted separately, nor were they significant when

included simultaneously into the model. The enrichment
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results for primary T cells from cord blood and CD15

when included simultaneously in the model for PD are

4.9, P = 1.1 9 10�3 and 7.0, P = 5.2 9 10�3, respec-

tively; and for ALS are 3.5, P = 0.03 and 3.1, P = 0.37,

respectively. Overall, these analyses provided us with reas-

surance that we were detecting independent signals in

adaptive versus innate immune cell types.

Our heritability enrichment analysis within brain-

related and immune-related gene sets also provided

strong evidence for a signal in the immune gene set, and

not in the brain gene set (Table S1). As expected, the

strongest immune gene signal was for MS (1.6,

P = 4.6 9 10�14). We have previously reported the

enrichment of this immune gene list in the same MS

dataset, using an earlier version of LD score regression.32

The immune gene list was also enriched for heritability in

AD (5.2, P = 4.8 9 10�4), and the effects in PD and ALS

were suggestive but would not survive multiple testing

correction (4.5, P = 0.02 and 2.5, P = 0.03, respectively).

The brain gene list was not significantly enriched in any

Figure 1. Enrichment of cell-type groups as used in Finucane et al.31 The black dashed lines at �log10(P) = 2.9 are the cutoff for Bonferroni

significance.
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of the neurodegenerative diseases assessed (among the

other three diseases enrichment ranges from 0.9 to 1.9,

P > 0.04 for all three).

Finally, we compared the above results to an IPA path-

way enrichment analysis, both within canonical pathways

(Table S3A) and within diseases/biological functions

including cancer-related functions (Table S3B). We also

compared our results to an enrichr pathway enrichment

analysis (Table S3C). Remarkably, for the IPA canonical

pathway analysis, all the significant pathways save one

(“Aldosterone Signaling in Epithelial Cells”) were found

to be connected to either adaptive or innate immune

response. Specific examples included: in MS (e.g.,

T-helper cell differentiation, role of macrophages, fibrob-

lasts, and endothelial cells in RA, B cell receptor signaling,

dendritic cell maturation, PI3K signaling in B lympho-

cytes, CD40 signaling; PKCh signaling in T lymphocytes,

NF-jB activation by viruses); in PD (e.g., dendritic cell

Figure 2. Enrichment of immune cell annotations. The black dashed lines at �log10(P) = 3.6 are the cutoff for Bonferroni significance. White

bars = tissue; purple bars = CD34 (marker of immature hematopoietic cells – not strictly adaptive or innate); light blue bars = marker of T cells;

dark blue bar = marker of B cells; royal blue bars = cells of the adaptive immune system; pink bars = cells of the innate immune system.
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maturation – shared with MS, graft-versus-host disease

signaling, altered T cell and B cell signaling in rheumatoid

arthritis); in AD (IL-8 signaling, IL-12 signaling and pro-

duction in macrophages, Fc epsilon RI signaling, Fcc
receptor-mediated phagocytosis in macrophages and

monocytes, role of pattern recognition receptors in recog-

nition of bacteria and viruses, natural killer cell signaling);

and in ALS (e.g., NF-jB signaling). The value of the IPA

method was also demonstrated in providing significant

signals for other pathways previously implicated in the

pathogenesis of AD, including CREB signaling in neu-

rons,41 neuregulin signaling, and ErbB signaling.42 For the

IPA diseases/biological functions analysis, various cancers

came up as most strongly significant for all the disorders.

Cancer has been shown to be correlated with multiple

immune disorders,43 and there is evidence of cancer and

neurodegenerative disorders, such as PD, sharing com-

mon pathways.44 The enrichr analysis revealed many sig-

nificant immune-related pathways, in line with the IPA

canonical pathways analysis.

Discussion

Multiple lines of evidence suggest a significant contribu-

tion of variants exhibiting functional marks for chromatin

accessibility (i.e., histone marks, DNase I hypersensitive

sites) in immune cell types to the heritability of two neu-

rodegenerative diseases, namely AD and PD. Annotations

from immune cells are most significantly enriched for the

heritability of MS, a known autoimmune disease which

acted as a positive control in our investigations.17

Immune annotations are also consistently enriched but to

a lesser degree for AD (with involvement from both the

innate and adaptive immune systems), and some cell-spe-

cific immune annotations (T cells) were significantly

enriched for PD. A lack of results from the ALS dataset

could be attributed to this dataset being smaller than the

other datasets investigated (Table 1). These results pro-

vide further support for the neuroinflammatory hypothe-

sis of neurodegenerative disease,15,16 and highlight the

potential utility of immune modulating agents, such as

those currently used in MS for the treatment of AD and

PD. However, one needs to be cautious with interpreting

these cell/tissue-type-specific results in the absence of

functional and other studies.

We note that if we correct for the 17 GWASs assessed in

Finucane et al.31 as well as the four GWASs we assessed

here for the 10 cell-type groups ([17 + 4] 9 10 = 210

hypotheses tested), both the immune/hematopoietic and

liver categories remain significant for AD.

The role of the immune system in AD pathogenicity has

been previously shown22,25 and previous pathway analysis

of the AD GWAS we assessed here showed enrichment in

immune-related pathways.24 Findings are strongest for the

innate immune response, for instance association with the

TREM2 gene, which in brain cells are primarily expressed

on microglia.45,46 Our findings further support the role of

immune variation in AD susceptibility. Interestingly, using

LD score regression, AD was found to be not significantly

correlated with a variety of immune diseases.34 This lack of

correlation could be because when considering the entire

genome the signal coming from the correlated loci between

the diseases is diluted, or the immune variants involved in

AD are different from those involved in other immune dis-

eases. Microglia, the main immune cell type in the brain,

have a different developmental trajectory separate from the

peripheral immune system.47

The unique mechanisms of immune surveillance in the

brain48,49 also make immune diseases of the brain biologi-

cally distinct to peripheral immune diseases, but there is

much evidence that disruption of the brain’s immune

surveillance is critical to the “vicious cycle” of worsening

pathology seen in neurodegeneration.50 Our analysis sug-

gests a predominantly epigenomic mechanism for

immune dysregulation in neurodegenerative disease, and

if confirmed this may be of therapeutic relevance, as

many drugs are known to act through this mechanism.

Some, such as histone deacetylase inhibitors, could poten-

tially be efficacious in neurodegenerative diseases.51

Functional marks from liver were also enriched for the

heritability of AD. This result agrees with findings in the

literature of the contribution of lipid metabolism through

liver X receptors (LXR) to the initiation and progression

of this disease.52,53

Canonical pathway analysis showed enrichment of AD

associations in CREB signaling in neurons, and also IL8

and IL12 signaling (which are CREB regulated), supporting

the immune hypothesis in AD, and pointing to interleukin

signaling as a potential CREB-responsive mechanism.54

Our results do not provide statistically significant evi-

dence that variants overlapping with functional annota-

tions from the brain contribute excessively to the

heritability of neurodegenerative diseases. The brain

doubtless plays an important role in the genetic etiology

of these diseases. The lack of brain annotation enrichment

could be due to data being based on few samples for the

brain. Furthermore, the brain is a very heterogeneous tis-

sue. Data from brain regions contain a mixture of differ-

ent cell types such as microglia and neurons. Single-cell

sampling may reduce this heterogeneity in the future.55

This analysis should be revisited as brain annotation

information improves.

In summary, our results suggest a significant contribu-

tion of variants that exhibit chromatin accessibility marks

in immune cells to the heritability of two neurodegenera-

tive diseases, namely AD and PD.
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Supporting Information

Additional Supporting Information may be found online

in the supporting information tab for this article:

Table S1. Annotation enrichment results. Red cells mark

enrichment that survived Bonferroni correction.

Table S2. Overlap among chromatin accessibility annota-

tions for immune cells. The main diagonal shows genome

coverage (base pairs) for that cell type. The upper off-

diagonal shows the overlap coverage (base pairs) for that

cell-type pair. The lower off-diagonal shows the propor-

tion of overlap coverage for that cell-type pair.

Table S3. (A) Ingenuity Pathway Analysis (IPA) results

for canonical pathways. Red cells mark enrichment that

survived Bonferroni correction. (B) Ingenuity Pathway

Analysis (IPA) results for cancer-related functions. Red

cells mark enrichment that survived Bonferroni correc-

tion. (C) enrichr KEGG pathway results. Multiplication of

the P-value computed using the Fisher’s exact test with

the z-score of the deviation from the expected rank as

described in the enrichr paper.38
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